

NEW DEVELOPMENTS IN 2016

https://bitbucket.org/nsakharnykh/hpgmg-cuda

Updated to include 4th order implementation on GPU

Optimized setup phase by porting remaining routines to GPU

Updated levels allocation to improve Unified Memory performance

Better multi-GPU scaling using CUDA-aware MPI with GPUDirect P2P

GPU memory oversubscription study (Parallel Forall blog post is pending)

GPUDirect Async implementation (https://github.com/e-ago/hpgmg-cuda-async)

HYBRID IMPLEMENTATION

Data sharing between CPU and GPU

Level N+1 (small) is shared between CPU and GPU

To avoid frequent migrations allocate N+1 in zero-copy memory

PERFORMANCE ON TESLA P100

HPGMG AMR PROXY

Data locality and reuse of AMR levels

OVERSUBSCRIPTION RESULTS

DATA PREFETCHING

Prefetch next level while performing computations on current level

Use cudaMemPrefetchAsync with non-blocking stream to overlap with default stream

RESULTS WITH USER HINTS

MULTI-GPU PERFORMANCE

MPI buffers can be allocated with cudaMalloc, cudaMallocHost, cudaMallocManaged CUDA-aware MPI can stage managed buffers through system or device memory

Preliminary results on 8xP100:

5.2x scaling using host buffers

6.8x scaling with NVLINK

NVIDIA.